
Values, types and variables

Contents

Overview
Simple types in HBasic
Declare and use variables
Variables of type object
Operator
Predefined functions
Enum definition
User defined types
Constant definitions
Array access

Overview

Variables and values of different types are one of the basic building blocks of a programming language. Variables may have different types or a
different scope. The scope or visibility desribes the parts of the source code where the variable can be used.
HBasic knows four kinds of variable scope.

global variables which may be used in the whole program.
variables which may be used in one source (or form) module. They will be called formlocal .
variables which may be used in a class scope (from class .. end class). They will be called classlocal.
variables local in a subroutine (or method). They will be called sublocal.

Before using variables in expressions you normally use a Dim or Public statement in the following way:

Dim v As Integer within a subroutine defines a sublocal variable.
Dim v as Integer within a class (outside a method) definition defines a classlocal variable.
Dim v As Integer outside a subroutine defines a formlocal variable.
Public v As Integer outside a subroutine defines a global variable.

Currently you may declare variables of the following predefined types:

Byte
Short
Integer
Double
String
Object (replaces Variant)

Other possible types for a variable may be Enums, user defined types, predefined components or user defined class names. The types Date and File
for example are implemented as components within a package.

Simple values

The first example shows how values of type integer, double or string may be used in the Print statement. The Print statement displays the value of
the expression following the print token in the current form window. The following examples will all connect the start of the example code to a
button_clicked event of a button component. This means you can start the method execution with a mouseclick of the left mouse button on the
button widget that will be displayed in the form.

' Print some values
'

Sub btn_start_clicked()
 Print "Program started"
 Print "Integer value"
 Print 2223333

 Print "Double value"
 Print 1111.2222

 ' Show more than one value
 Print 11111, 2222

 Print "Show text"
End Sub

Example ex_simple_types.bas: Print some values of different types.

Variable access

The variable example defines some global, formlocal and sublocal variables. These variables will be assigned initial values with an assignment
statement and the result will be printed with the Print statement. The interpreter and compiler of HBasic will create simple read and write access
functions to the variable memory from this code.

' Define variables and read or write values

' global variables (public)

Public gl_var1 As Integer
Public gl_var2 As String

' local in module / form

Dim fl_var1 As Integer
Dim fl_var2 As Double

Sub btn_start_clicked()
 ' local in subroutine

 Dim sl_var1 As Integer
 Dim sl_var2 As Double

 gl_var1 = 888
 gl_var2 = "Global var"
 Print gl_var1, gl_var2

 fl_var1 = 333444555
 fl_var2 = 12.3456
 Print fl_var1, fl_var2

 sl_var1 = 3344
 sl_var2 = 456.789
 Print sl_var1
 Print sl_var2
End Sub

Example ex_var_types.bas: Write and read variable contents

Variables of type Object

Object variables replace the old type Variant in HBasic. Variables of type object may currently store values of type integer, double or string. If you
assign a value to a variable which hasn't been defined before in a Dim statement it will get the type object automatically (Variable i in the following
example). You may also define a variable of type object in a Dim statement (variable v in the example).

Sub button1_clicked()
 i = 1234
 Print i

 i = "Hello object variable"
 Print i

 Dim v As Object

 v = "Predefined variablt of type object"
 Print v
End Sub

Example ex_object.bas: Create and use object variable

Operator example

One or more variables and values may be combined in an expression with operators. Operators normally need matching types for the operand on
the left and right side to work correctly. I f the operands are not of the same type HBasic will try to convert them. The following conversions will be
started automatically:

Object values will be converted to normal values of type int, double or string.
Integer values will be converted to double if the second operand is of type double.
Integer or double values will be converted to a string if the second operand is of type string.

The following examples shows expressions with different type of operators.

' Use operators for simple types

Sub btn_start_clicked()
 Dim v1, v2, v3 As Integer

 v1 = 2
 v2 = 3
 v3 = 4

 Print "Add v1 + v2 = "
 Print v1 + v2

 Print "v1 * v2 = "
 Print v1 * v2

 Print "Operator priority"
 Print "v1 + v2 * v3 = "
 Print v1 + v2 * v3

 Print "(v1 + v2) * v3"
 Print (v1 + v2) * v3

 Print "Concatenating strings aaa + bbb"

 Dim s1, s2, s3 As String
 s1 = "Hello "
 s2 = "HBasic "
 s3 = "world!"

 Print s1 + s2 + s3
End Sub

Example ex_operator.bas: Example of some operators in expressions.

Predefined functions

HBasic provides some predefined functions/methods to change values of variables. You can can find a list of the available functions in the function
list. The following examples calls some functions that are build into HBasic.

' Using predefined functions

Public g1 As Integer
Public g2 As Double
Public g3 As String

Const pi = 3.1415926535

Sub btn_start_clicked()
 g2 = pi

 Print "sin, cos ..."
 Print sin(pi)
 Print cos(g2)

 Print "String methods"
 g3 = "aaabbb"
 Print left(g3, 3)

 msgbox("Title", "Message box")

 g1 = -2
 Print abs(g1)

 Print "Overloading methods"
 Print "Integer str()" + str(111)
 Print "double str()" + str(111.222)
End Sub

Example ex_predef_functions.bas: Call predefined HBasic functions.

Enum definition

With the Enum statement you can define a new type of enumerated values. After you have defined a new Enum type you can declare variables of
this type. The following example shows an Enum statement used to define a list of weekdays.

' Define and use Enum values

Enum days
 monday
 tuesday
 thursday = 4
 friday = 11
 saturday
 sunday
End Enum

Public var1 As days

Sub btn_start_clicked()
 Print "Enum values"

 var1 = tuesday
 Print "Tuesday = ", var1

 var1 = friday
 Print "Friday = ", var1

 var1 = sunday
 Print "Sunday = ", var1
End Sub

Example ex_enum.bas: Define Enum type and use it.

User defined types / structures

The Type keyword is used to declare a user defined data structure. The type statement describes only the information about the structure. You
have to use the Dim statement to actually create variables of the new type.

The following examples shows how to declare a data structure with the type statement and use a variable declared of this type.

' Use of user defined types

Type smalldef
 i1 As Integer
 i2 As Integer
End Type

Type mydef
 ival As Integer
 sval As smalldef
 dval As Double
 aval(10) As Integer
End Type

Public var1 As mydef

Sub btn_start_clicked()
 var1.ival = 111
 var1.dval = 333.444555

 ' Use of array within structure

 var1.aval(4) = 222
 var1.aval(6) = var1.aval(4) + 333

 ' Use of structure within other structure

 var1.sval.i1 = 1234
 var1.sval.i2 = 4444

 Print "Read type values"

 Print var1.ival
 Print var1.dval

 Print var1.aval(4)
 Print var1.aval(6)

 Print var1.sval.i1
 Print var1.sval.i2
End Sub

Example ex_usertype.bas: Create user defined type and access values in it.

Constant definitions

You can use constant definitions to represent better readable values within your source code. A constant is a way to associate a value with a name
which is easier to remember. This is helpful when trying to write better readable programs. Beside predefined constants of the HBasic program you
may define your own constants by using the "CONST" keyword.

Const maxnum = 1234
Const pi = 3.141592

Sub btn_start_clicked()
 Const ctext = "Hello"
 Print "Const integer = ", maxnum
 Print "Const double = ", pi
 Print "Const string = ", ctext

End Sub

Example ex_const.bas: Defining and using constants

The scope of a constant definition is the whole program. You may define and use a constant anywhere in your source code before or behind the
line definining the value of the constant. Currently constant definitions may only be used for the following types of values:

Integer values 1, 555, 12345
Double values 3.1415, 123.456E10
Strings "Test", "Hello world"

The syntax of a constant definition is

CONST <const-idf> = <const_value>

<const-idf> is the identifier which represents the constant in the rest of the program.
<const_value> is a constant value of type Integer, Double or string.

Array access

This examples shows how an array can be defined within a Dim statement and how you may access the components of an array in an expression.
Currently you can only use arrays with predefined size. This means the size of the array cannot be changed dynamically at run time.

The following example shows how to define and access an array.

' Array access

Public a1(10,10) As Integer
Public a2(20) As Double

Sub btn_start_clicked()
 Print "Program started"
 a1(2,4) = 111
 a1(3,6) = 222

 a2(4) = 111.111
 a2(6) = 44.4444
 Print "Array1 type integer, two dimensions"
 Print a1(2,4), a1(3,6)
 Print "Array2 type double, one dimension"
 Print a2(4), a2(6)
End Sub

Example ex_array.bas: Use one and twodimensional array.

